Portfolios with Deadlines for Backtracking Search
نویسندگان
چکیده
Backtracking search is often the method of choice for solving constraint satisfaction and propositional satisfiability problems. Previous studies have shown that portfolios of backtracking algorithms—a selection of one or more algorithms plus a schedule for executing the algorithms—can dramatically improve performance on some instances. In this paper, we consider a setting that often arises in practice where the instances to be solved arise over time, the instances all belong to some class of problem instances, and a limit or deadline is placed on the computational resources that can be consumed in solving any instance. For such a scenario, we present a simple scheme for learning a good portfolio of backtracking algorithms from a small sample of instances. We demonstrate the effectiveness of our approach through an extensive empirical evaluation using two testbeds: real-world instruction scheduling problems and the widely used quasigroup completion problems.
منابع مشابه
Bilateral Teleoperation Systems Using Backtracking Search optimization Algorithm Based Iterative Learning Control
This paper deals with the application of Iterative Learning Control (ILC) to further improve the performance of teleoperation systems based on Smith predictor. The goal is to achieve robust stability and optimal transparency for these systems. The proposed control structure make the slave manipulator follow the master in spite of uncertainties in time delay in communication channel and model pa...
متن کاملOne-Dimensional Modeling of Helicopter-Borne Electromagnetic Data Using Marquardt-Levenberg Including Backtracking-Armijo Line Search Strategy
In the last decades, helicopter-borne electromagnetic (HEM) method became a focus of interest in the fields of mineral exploration, geological mapping, groundwater resource investigation and environmental monitoring. As a standard approach, researchers use 1-D inversion of the acquired HEM data to recover the conductivity/resistivity-depth models. Since the relation between HEM data and model ...
متن کاملStochastic Procedures for Generating Feasible Schedules
In this paper, we investigate the use of stochastic variable and value ordering heuristics for solving job shop scheduling problems with non-relaxable deadlines and complex metric constraints. Previous research in constraint satisfaction scheduling has developed highly effective, deterministic heuristics for this class of problems based on simple measures of temporal sequencing exibility. Howev...
متن کاملUnrestricted Backtracking Algorithms for Satisfiability
This paper proposes a general framework for implementing backtracking search strategies in Propositional Satisfiability (SAT) algorithms, that is referred to unrestricted backtracking. Different organizations of unrestricted backtracking yield well-known backtracking search strategies. Moreover, this general framework allows devising new backtracking strategies. Hence, we illustrate and compare...
متن کاملRandom backtracking in backtrack search algorithms for satisfiability
This paper proposes the utilization of randomized backtracking within complete backtrack search algorithms for propositional satisfiability (SAT). In recent years, randomization has become pervasive in SAT algorithms. Incomplete algorithms for SAT, for example the ones based on local search, often resort to randomization. Complete algorithms also resort to randomization. These include state-of-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International Journal on Artificial Intelligence Tools
دوره 17 شماره
صفحات -
تاریخ انتشار 2008